If it's not what You are looking for type in the equation solver your own equation and let us solve it.
f^2-27f=0
a = 1; b = -27; c = 0;
Δ = b2-4ac
Δ = -272-4·1·0
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-27}{2*1}=\frac{0}{2} =0 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+27}{2*1}=\frac{54}{2} =27 $
| -3(d+10)=-3 | | w/3− 3=1 | | 2(w-3)=-3(2w+1) | | -20+7p=-6+5p | | .(−7)+b=(−11)b= | | -4x+24=8(x+9) | | 1,5p+3+p=8 | | 10(2x+4)=1(8+9x)+3x | | 1000+25(n-12)=740+33(n-10) | | 2j-2j-7=0 | | -(t-8)=0 | | 3(4x-2=12x2 | | (x+4)(x-3)(x-18)=0 | | 27+x=254 | | 2(x-3)^2-14=0 | | –19q−–9q−–5q−–19q+–q=13 | | 35t^2+11t=0 | | -2(u-1)=-10 | | -2(u-1)=-19 | | 11=d/3+ 10 | | 5(x-5)=11 | | 18x+3x-10x-2x-8x=12 | | 53x=742 | | 4/30=x/10 | | 13=v/2+ 9 | | -3x+10x=13+2x-8 | | 4^3x-1=8 | | 7x+8x=10x-11 | | −4x+8=−4x−8 | | a=4,10a= | | 7x²+8x=10x-11 | | 17=h/2+ 13 |